Trending

Answers

  • 0
  • 0

The practical application of the nanomaterial silicon monoxide, nanoparticles are expected to contribute to tumor diagnosis and treatment

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



The practical application of the nanomaterial silicon monoxide, nanoparticles are expected to contribute to tumor diagnosis and treatment.

Intelligent deformable nanoparticles are expected to make progress in tumor diagnosis and treatment

For more than three decades, biomedical nanomaterials have been successfully developed for therapeutic diagnostics -- a compound term that refers to the diagnosis and treatment of tumors. Nanoparticles must reach the tumor site and its unique microenvironment to target the tumor.

Recent studies have shown that the physical properties of nanoparticles, especially their size and shape, greatly affect their biological behavior. After the particle circulates through a variety of other healthy physiological microenvironments, these material properties must be controlled to ensure therapeutic release at the tumor site.

These smart shape-shifting nanoparticles are particularly promising for use in tumor therapeutics because their physical properties will adapt to physiology. These adaptations improve particle circulation, biological distribution, tumor penetration, tumor retention, and subcellular distribution of targeted therapies.

"Smart deformable nanoparticles can change their shape under different physiological conditions according to therapeutic needs," said co-author Jianxun Ding. "In our study, we reveal the structural design of these intelligent systems as well as the in-depth mechanisms of transformation."

The researchers use the design of deformable nanoparticles as guidelines for their construction and discuss biomedical applications in the field of therapeutic diagnostics. Ding and his colleagues present their insights through a new classification of nanoparticle transformation design and mechanisms that enable change.

For example, the researchers divided design transitions into two broad categories: size and shape. For transformable nanoparticles, the changes are further divided into small to large and large to small transitions. The study reveals a detailed and rational design of deformable nanoparticles based on their structure.

As for the mechanisms that enable the transformation of nanoparticles, "we think both structure and stimulus make a big contribution," Ding said. "For example, different pH values determine the exact site of transformation, which is associated with different physiological, extracellular and intracellular/lysosomal conditions."

In the past, nanoparticles with constant physical morphology have been widely studied and applied in tumor therapeutics, while recent studies on the transformation of nanoparticles have focused on the response to stimuli. However, until now, there has been no in-depth discussion of the design and application of morphologically convertible nanoparticles.

New materials for a sustainable future you should know about the silicon monoxide.

Historically, knowledge and the production of new materials silicon monoxide have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.

About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the silicon monoxide raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The silicon monoxide materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.

The silicon monoxide industry has a strong research environment in electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.

New materials including the silicon monoxide market trend is one of the main directions of science and technology development in the 21st century

With the development of science and technology, people develop new materials silicon monoxide on the basis of traditional materials and according to the research results of modern science and technology. New materials are divided into metal materials, inorganic non-metal materials (such as ceramics, gallium arsenide semiconductor, etc.), organic polymer materials, advanced composite materials. According to the silicon monoxide material properties, it is divided into structural materials and functional materials. Structural materials mainly use mechanical and physical and chemical properties of materials to meet the performance requirements of high strength, high stiffness, high hardness, high-temperature resistance, wear resistance, corrosion resistance, radiation resistance and so on; Functional materials mainly use the electrical, magnetic, acoustic, photo thermal and other effects of materials to achieve certain functions, such as semiconductor materials, magnetic materials, photosensitive materials, thermal sensitive materials, stealth materials and nuclear materials for atomic and hydrogen bombs.

One of the main directions of silicon monoxide science and technology development in the 21st century is the research and application of new materials. The research of new materials is a further advance in the understanding and application of material properties.

About TRUNNANO- Advanced new materials Nanomaterials silicon monoxide supplier

Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of

nanotechnology development and applications. Including high purity silicon monoxide, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:

Amorphous Boron Powder

Nano Silicon Powder

High Purity Graphite Powder

Boron Nitride

Boron Carbide

Titanium Boride

Silicon Boride

Aluminum Boride

NiTi Powder

Ti6Al4V Powder

Molybdenum Disulfide

Zin Sulfide

Fe3O4 Powder

Mn2O3 Powder

MnO2 Powder

Spherical Al2O3 Powder

Spherical Quartz Powder

Titanium Carbide

Chromium Carbide

Tantalum Carbide

Molybdenum Carbide

Aluminum Nitride

Silicon Nitride

Titanium Nitride

Molybdenum Silicide

Titanium Silicide

Zirconium Silicide

and so on.

For more information about TRUNNANO or looking for high purity new materials silicon monoxide, please visit the company website: nanotrun.com.

Or send an email to us: sales1@nanotrun.com 

Inquiry us

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity 3D Printing Nickel-based Alloy IN738 Powder

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

High Purity Silicon Nitride Si3N4 Powder CAS 12033-89-5, 99%

Our Latest Products

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal Al…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, high thermal conductivity, and radiation absorption. It is used widely in the aerospace and medical industries. About Metal Alloy 18.5g/cm3 Polished Tungst…

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

W-Ni - Cu alloy is used in the production of Tungsten alloy balls. It is widely utilized in the fields of aviation, oil drilling, military and aerospace. High Density Tungsten Alloy Metal Ball, 18g/cm3 Diameter: 1.0mm-150.0mm Surface: sinter…