Trending

News

  • 0
  • 0

Scientists Use 3D Printing to Print Non-magnetic Metal Powders into Magnetic Alloys

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Analysts at JPMorgan recommended selling or "underweight" emerging market local currency sovereign debt because of the global impact of the Ukraine-Russia crisis.

JPMorgan estimated that fixed-income assets in emerging markets have lost 6-9 percent of their value since Russia invaded Ukraine a month ago, with nervousness about the war and its impact on global energy and food prices adding to existing pressures.

Some leading emerging market central banks are signaling that interest rates now need to rise faster than previously expected, which fuels fears of "stagflation". Stagflation means when high inflation and higher interest rates undermine economic growth.  

With both the U.S. Federal Reserve and emerging market central banks raising interest rates, JPMorgan also said it made sense to "underweight" emerging market assets by taking advantage of the recent pullback in local currency bond yields relative to TREASURIES.  

JPMorgan said major metals exporters such as South Africa, Chile, and Peru could still do well, but warned that emerging market fixed income assets now faced a more "stagflationary" trajectory.

The markets and prices of many commodities, metals, chemicals like the 3D printing metal powder still face uncertainty.

Scientists at Skoltech University in Russia used a 3D printer to create an alloy of two materials whose composition ratios varied from one region of the sample to the next, and the resulting alloy had gradient magnetism, even though none of the initial materials were magnetic.
 
3D printing, a rapid prototyping method, is maturing for aircraft parts, medical implants and prosthetics, jewelry, custom shoes, and more. 
 
The main advantage of 3D printing is the ability to create objects with very complex shapes that are either too expensive to produce or completely impossible to produce using traditional casting, rolling, stamping, or machining methods. 3D printing speeds up prototyping time and offers greater flexibility in product personalization and the number of batches. Another significant advantage of 3D printing is its low waste. 
 
However, 3D printing has its limitations, requiring objects to be made entirely of homogeneous materials or mixtures. If the composition is different in different parts of the product, it is possible to obtain samples with changing characteristics. For example, A bar made of an alloy of two metals has A variable ratio of composition: one end starts with 100 percent of metal A, then 50 percent of each, then 100 percent of metal B, and so on. Thus, the properties of the obtained materials (including magnetic materials) can vary in a gradient, which makes them potentially useful for the manufacture of motor rotors, magnetic encoder strips, transformers, etc.
 
Skoltech scientists have researched and made such a kind of material, with the original ingredients A and B being two alloys: aluminum-bronze (copper, aluminum, and iron) and austenitic stainless steel (iron, chromium, and nickel, among others). Both alloys are paramagnetic, which means they are not attracted by magnets. But if you mix them, you get what's called a "soft magnetic material" ferromagnet, which is attracted to a permanent magnet. 
 
The researchers used the two paramagnetic materials to create a gradient alloy. They used an InssTekMX-1000 3D printer, which works by depositing material using directional energy action, feeding a powdery material, and melting it with a laser at the same time. The resulting materials exhibit varying degrees of ferromagnetic properties, depending on the proportions of the components. 
 
The researchers also theorized that the atomic structure of the alloy contributes to the expression of ferromagnetism in the alloy: although both materials have so-called face-centered cubic crystal structures, the combination results in a magnetic body-centered cubic structure. 
 
Gradient soft magnetic alloys can be used in mechanical engineering, for example, in the production of electric motors. The results also show that the method of surface treatment of materials using directional energy action can not only obtain gradient materials using 3D printing but also discover new alloys. The technology is efficient and suitable for the rapid production of large parts.
 
3D Printing powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest 3D printing powder price, you can send us your inquiry for a quote. ([email protected])
 
3D Printing powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality 3D printing powder, please feel free to contact us and send an inquiry. ([email protected])

 

3D printing technology emerged in the mid-1990s and is actually the latest rapid prototyping device utilizing technologies such as light curing and paper lamination. It is basically the same as ordinary printing. The printer is equipped with "printing materials" such as liquid or powder. After connecting to the computer, the "printing materials" are superimposed layer by layer through computer control, and finally the blueprint on the computer is turned into a real thing. This printing technology is called 3D stereo printing technology.
Our company is a strong company that provides excellent 3D printing 3D printing metal powder. If you need 3D printing and 3D printing metal powder, please feel free to contact us.

Inquiry us

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity 3D Printing Nickel-based Alloy IN738 Powder

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

High Purity Silicon Nitride Si3N4 Powder CAS 12033-89-5, 99%

Our Latest Products

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal Al…

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, high thermal conductivity, and radiation absorption. It is used widely in the aerospace and medical industries. About Metal Alloy 18.5g/cm3 Polished Tungst…

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

W-Ni - Cu alloy is used in the production of Tungsten alloy balls. It is widely utilized in the fields of aviation, oil drilling, military and aerospace. High Density Tungsten Alloy Metal Ball, 18g/cm3 Diameter: 1.0mm-150.0mm Surface: sinter…